The Evolution of Endothelial Therapeutics

Authors

  • Greg Moloney, MBBS (Hons), BSc(Med), MMed, FRANZCO, FRCSC University of British Columbia, Vancouver, BC, Sydney Eye Hospital, Sydney, AUS, Sydney University, Sydney, AUS
  • Antoine Sylvestre-Bouchard, MD, MSc. Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, AB
  • Mary Holdsworth, MD, BSc, MScPH Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, AB

DOI:

https://doi.org/10.58931/cect.2025.4155

Abstract

Corneal endothelial diseases comprise a spectrum of conditions that critically affect the health and transparency of the cornea, posing unique challenges for ophthalmologists. The most prevalent among these is Fuchs’ endothelial corneal dystrophy (FECD), which accounts for approximately 39% of all corneal transplants globally. Bullous keratopathy (BK) can affect the entire cornea, leading to painful blisters that may become infected. Other rarer pathologies, such as iridocorneal endothelial syndrome, posterior polymorphous corneal dystrophy, and congenital hereditary endothelial dystrophy, present unique diagnostic and therapeutic challenges. Additionally, graft failure remains a notable indication for treatment. High-risk cases experience failure rates exceeding 35% within 3 years, with endothelial rejection accounting for half of the cases. Corneal transplants have been considered the gold standard for decades, with advancements in surgical techniques leading to shorter operating times, faster visual recovery, and improved outcomes. However, the growing global shortage of transplant-grade donor tissue further complicates treatment, underscoring the urgent need for innovative approaches such as genetic and cell-based therapies.

Author Biographies

Greg Moloney, MBBS (Hons), BSc(Med), MMed, FRANZCO, FRCSC, University of British Columbia, Vancouver, BC, Sydney Eye Hospital, Sydney, AUS, Sydney University, Sydney, AUS

Dr. Moloney is an Australian ophthalmologist trained at Sydney Eye Hospital, with fellowship training in Cornea and Oculoplastics at the University of British Columbia. He now lives and works in Vancouver as Clinical Associate Professor at UBC. His main areas of research interest are Fuchs Dystrophy, therapeutic laser refractive surgery and anterior segment reconstruction including keratoprosthesis.

Antoine Sylvestre-Bouchard, MD, MSc., Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, AB

Dr. Antoine Sylvestre-Bouchard serves as the chief ophthalmology resident at the University of Calgary, a role through which he was honored with the Calgary PGME Resident Leader Award and the PARA Resident Physician Leadership Award. He holds an MD-MSc from the University de Montréal, where he conducted research on the biocompatibility of a novel corneal biosynthetic implant designed to replace allografts in complex inflammatory diseases. Previously, he held the position of Research Director, and he currently serves as the Communications Director for the Council of Canadian Ophthalmology Residents. On top of medical education, advanced anterior segment surgery and visual rehabilitation, he is highly invested in the application of AI and VR in vision health.

Mary Holdsworth, MD, BSc, MScPH, Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, AB

Dr. Mary Holdsworth is currently in her second year of residency at the University of Calgary. She holds an MSc in Public Health and Epidemiology, where she focused on outcomes research and social epidemiology. Her interests also include mentorship and global ophthalmology.

References

Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–173. doi:10.1001/jamaophthalmol.2015.4776 DOI: https://doi.org/10.1001/jamaophthalmol.2015.4776

Gurnani B, Czyz CN, Mahabadi N, Havens SJ. Corneal Graft Rejection. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Mar 20]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK519043/

Shivanna Y, Nagaraja H, Kugar T, Shetty R. Femtosecond laser enabled keratoplasty for advanced keratoconus. Indian J Ophthalmol. 2013;61(8):469–472. doi:10.4103/0301-4738.116060 DOI: https://doi.org/10.4103/0301-4738.116060

Melles GR, Eggink FA, Lander F, Pels E, Rietveld FJ, Beekhuis WH, et al. A surgical technique for posterior lamellar keratoplasty. Cornea. 1998;17(6):618–626. doi:10.1097/00003226-199811000-00010 DOI: https://doi.org/10.1097/00003226-199811000-00010

Yi CH, Lee DH, Chung ES, Chung TY. A Comparison of posterior lamellar keratoplasty modalities: DLEK vs. DSEK. Korean J Ophthalmol KJO. 2010;24(4):195–200. doi:10.3341/kjo.2010.24.4.195 DOI: https://doi.org/10.3341/kjo.2010.24.4.195

Price FW Jr, Price MO. Evolution of endothelial keratoplasty. Cornea. 2013;32 Suppl 1:S28-S32. doi:10.1097/ICO.0b013e3182a0a307 DOI: https://doi.org/10.1097/ICO.0b013e3182a0a307

Price MO, Kanapka L, Kollman C, Lass JH, Price FW Jr. Descemet membrane endothelial keratoplasty: 10-year cell loss and failure rate compared with Descemet stripping endothelial keratoplasty and penetrating keratoplasty. Cornea. 2024;43(11):1403–1409. DOI: https://doi.org/10.1097/ICO.0000000000003446

Liu C, Mehta JS, Liu YC. Femtosecond laser-assisted corneal transplantation. Taiwan J Ophthalmol. 2023;13(3):274–284. doi:10.4103/tjo.TJO-D-23-00080 DOI: https://doi.org/10.4103/tjo.TJO-D-23-00080

Flockerzi E, Maier P, Böhringer D, Reinshagen H, Kruse F, Cursiefen C, et al. Trends in corneal transplantation from 2001 to 2016 in Germany: a report of the DOG-section cornea and its keratoplasty registry. Am J Ophthalmol. 2018;188:91–98. doi:10.1016/j.ajo.2018.01.018 DOI: https://doi.org/10.1016/j.ajo.2018.01.018

Chan SWS, Yucel Y, Gupta N. New trends in corneal transplants at the University of Toronto. Can J Ophthalmol. 2018;53(6):580–587. doi:10.1016/j.jcjo.2018.02.023 DOI: https://doi.org/10.1016/j.jcjo.2018.02.023

Zwingelberg SB, Karabiyik G, Gehle P, von Brandenstein M, Eibichova S, Lotz C, et al. Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK). NPJ Regen Med. 2025;10(1):10. doi:10.1038/s41536-025-00396-0 DOI: https://doi.org/10.1038/s41536-025-00396-0

Bostan C, Bernier M, Boutin T, Slim E, Mabon M, Brunette I, et al. Intracameral fibrinous reaction during Descemet’s membrane endothelial keratoplasty. Ocul Immunol Inflamm. 2024;32(8):1682–1688. doi:10.1080/09273948.2023.2287057 DOI: https://doi.org/10.1080/09273948.2023.2287057

Birbal RS, Ni Dhubhghaill S, Baydoun L, Ham L, Bourgonje VJA, Dapena I, et al. Quarter-Descemet membrane endothelial keratoplasty: one- to two-year clinical outcomes. Cornea. 2020;39(3):277–282. doi:10.1097/ICO.0000000000002127 DOI: https://doi.org/10.1097/ICO.0000000000002127

Hurley DJ, Murtagh P, Guerin M. Ultrathin Descemet Stripping Automated Endothelial Keratoplasty (UT-DSAEK) versus Descemet Membrane Endothelial Keratoplasty (DMEK)—a systematic review and meta-analysis. Eye (Lond). 2023;37(14):3026–3032. doi:10.1038/s41433-023-02467-2 DOI: https://doi.org/10.1038/s41433-023-02467-2

Cheung AY, Hou JH, Bedard P, Grimes V, Buckman N, Eslani M, et al. Technique for Preparing ultrathin and nanothin Descemet stripping automated endothelial keratoplasty Tissue. Cornea. 2018;37(5):661–666. doi:10.1097/ICO.0000000000001510 DOI: https://doi.org/10.1097/ICO.0000000000001510

Moloney G, Petsoglou C, Ball M, Kerdraon Y, Höllhumer R, Spiteri N, et al. Descemetorhexis Without grafting for Fuchs endothelial dystrophy-supplementation with topical ripasudil. Cornea. 2017;36(6):642–648. doi:10.1097/ICO.0000000000001209 DOI: https://doi.org/10.1097/ICO.0000000000001209

Northey LC, Moloney G. Role of descemet’s stripping without keratoplasty in management of endothelial disease. Curr Opin Ophthalmol. 2023;34(4):348–353. doi:10.1097/ICU.0000000000000963 DOI: https://doi.org/10.1097/ICU.0000000000000963

Shah RD, Randleman JB, Grossniklaus HE. Spontaneous corneal clearance after Descemet’s stripping without endothelial replacement. Ophthalmology. 2012;119(2):256–260. doi:10.1016/j.ophtha.2011.07.032 DOI: https://doi.org/10.1016/j.ophtha.2011.07.032

Arbelaez JG, Price MO, Price FW Jr. Long-term follow-up and complications of stripping descemet membrane without placement of graft in eyes with Fuchs endothelial dystrophy. Cornea. 2014;33(12):1295–1299. doi:10.1097/ICO.0000000000000270 DOI: https://doi.org/10.1097/ICO.0000000000000270

Garcerant D, Hirnschall N, Toalster N, Zhu M, Wen L, Moloney G. Descemet’s stripping without endothelial keratoplasty. Curr Opin Ophthalmol. 2019;30(4):275–285. doi:10.1097/ICU.0000000000000579 DOI: https://doi.org/10.1097/ICU.0000000000000579

Deng SX, Lee WB, Hammersmith KM, Kuo AN, Li JY, Shen JF, et al. Descemet membrane endothelial keratoplasty: safety and outcomes: a report by the American Academy of Ophthalmology. Ophthalmology. 2018;125(2):295–310. doi:10.1016/j.ophtha.2017.08.015 DOI: https://doi.org/10.1016/j.ophtha.2017.08.015

Ang M, Soh Y, Htoon HM, Mehta JS, Tan D. Five-year graft survival comparing Descemet stripping automated endothelial keratoplasty and penetrating keratoplasty. Ophthalmology. 2016;123(8):1646–1652. doi:10.1016/j.ophtha.2016.04.049 DOI: https://doi.org/10.1016/j.ophtha.2016.04.049

Okumura N, Fujii K, Kagami T, Makiko N, Kitahara M, Kinoshita S, et al. Activation of the Rho/Rho kinase signaling pathway is involved in cell death of corneal endothelium. Invest Ophthalmol Vis Sci. 2016;57(15):6843–6851. doi:10.1167/iovs.16-20123 DOI: https://doi.org/10.1167/iovs.16-20123

Futterknecht S, Chatzimichail E, Gugleta K, Panos GD, Gatzioufas Z. The role of rho kinase inhibitors in corneal diseases. Drug Des Devel Ther. 2024;18:97–108. doi:10.2147/DDDT.S435522 DOI: https://doi.org/10.2147/DDDT.S435522

Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–806. doi:10.1167/iovs.03-0016 DOI: https://doi.org/10.1167/iovs.03-0016

Koizumi N, Okumura N, Kinoshita S. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models. Exp Eye Res. 2012;95(1):60–67. doi:10.1016/j.exer.2011.10.014 DOI: https://doi.org/10.1016/j.exer.2011.10.014

Peh GSL, Ong HS, Adnan K, Ang HP, Lwin CN, Seah XY, et al. Functional evaluation of two corneal endothelial cell-based therapies: tissue-engineered construct and cell injection. Sci Rep. 2019;9:6087. doi:10.1038/s41598-019-42493-3 DOI: https://doi.org/10.1038/s41598-019-42493-3

Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995–1003. doi:10.1056/NEJMoa1712770 DOI: https://doi.org/10.1056/NEJMoa1712770

Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14(1):9–21. doi:10.1038/nrneurol.2017.148 DOI: https://doi.org/10.1038/nrneurol.2017.148

Hu J, Rong Z, Gong X, Zhou Z, Sharma VK, Xing C, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy. Hum Mol Genet. 2018;27(6):1015–1026. doi:10.1093/hmg/ddy018 DOI: https://doi.org/10.1093/hmg/ddy018

Du J, Aleff RA, Soragni E, Kalari K, Nie J, Tang X, et al. RNA toxicity and missplicing in the common eye disease Fuchs endothelial corneal dystrophy. J Biol Chem. 2015;290(10):5979–5990. doi:10.1074/jbc.M114.621607 DOI: https://doi.org/10.1074/jbc.M114.621607

Salman M, Verma A, Singh VK, Jaffet J, Chaurasia S, Sahel DK, et al. New frontier in the management of corneal dystrophies: basics, development, and challenges in corneal gene therapy and gene editing. Asia-Pac J Ophthalmol (Phila). 2022;11(4):346–359. doi:10.1097/APO.0000000000000443 DOI: https://doi.org/10.1097/APO.0000000000000443

Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: an emerging target in ocular pathology. Invest Ophthalmol Vis Sci. 2021;62(3):22. doi:10.1167/iovs.62.3.22 DOI: https://doi.org/10.1167/iovs.62.3.22

Saha S, Skeie JM, Schmidt GA, Eggleston T, Shevalye H, Sales CS, et al. TCF4 trinucleotide repeat expansions and UV irradiation increase susceptibility to ferroptosis in Fuchs endothelial corneal dystrophy. Redox Biol. 2024;77:103348. doi:10.1016/j.redox.2024.103348 DOI: https://doi.org/10.1016/j.redox.2024.103348

Downloads

Published

2025-06-17

How to Cite

1.
Moloney G, Sylvestre-Bouchard A, Holdsworth M. The Evolution of Endothelial Therapeutics. Can Eye Care Today [Internet]. 2025 Jun. 17 [cited 2025 Jun. 28];4(1):25–3`1. Available from: https://canadianeyecaretoday.com/article/view/4-1-Moloney_et_al

Issue

Section

Articles