Clinical applications of optical coherence tomography (OCT) in glaucoma

Authors

  • Hady Saheb, MD, MPH, FRCSC
  • Ali Salimi, MD, MSc

DOI:

https://doi.org/10.58931/cect.2022.1318

Abstract

Visual field (VF) testing has been the mainstay for diagnosing and monitoring glaucoma. However, relying solely on VF can delay the patient’s diagnosis in the early stages of the disease, as the structural changes are known to precede the functional changes and VF defects may not be clinically detectable until at least 25-35% of retinal ganglion cells (RGCs) are lost. This concept highlights the importance of alternative diagnostic modalities such as optical coherence tomography (OCT). OCT’s ability to reliably segregate and quantify the thickness of retinal layers has allowed earlier detection of glaucoma, up to 6 years before the onset of any detectable VF loss. Compared to VF, OCT is less time-consuming and is less dependent on the patient’s cooperation and test-taking ability. There are a few commercially available spectral domain OCT (SD-OCT) machines that are routinely used in glaucoma clinics. These devices are fundamentally similar with comparable performance, but their scanning protocols and segmentation algorithms are not analogous; thus, the measured parameters may not necessarily be interchangeable between devices and the values should be interpreted relative to the normative databases specific to each machine. In this review, we present the clinical applications of OCT imaging in glaucoma and share some clinical pearls and pitfalls.

Author Biographies

Hady Saheb, MD, MPH, FRCSC

Dr. Hady Saheb is currently Director of the Glaucoma Fellowship Program at McGill University. He is also a board member of the Canadian Ophthalmology Society (COS), Chair of the Continuing Professional Development (CPD) Council of the COS, and Treasurer for the Canadian Glaucoma Society (CGS). Dr. Saheb earned his medical degree and completed his residency at McGill University. He was a glaucoma fellow at the Bascom Palmer Eye Institute in Miami and subsequently completed a second fellowship in Novel Glaucoma Surgical Devices and Complex Anterior Segment Surgery with Dr. Ike Ahmed at the University of Toronto. He also completed a Masters in Public Health at the Johns Hopkins University Bloomberg School of Public Health in Baltimore, with an interest in Clinical Trials and Health Leadership. Dr. Saheb is passionate about innovation and education and has received several awards, published peer-reviewed publications and book chapters, and spoken at multiple national and international meetings.

Ali Salimi, MD, MSc

Dr. Ali Salimi is currently an ophthalmology resident at McGill University. He has published numerous peer-reviewed articles, presented his research internationally, and received various research awards. Dr. Salimi envisions becoming an Ophthalmologist-Scientist practicing at an academic center where he can combine his passion for education, research, and innovation in ophthalmology.

References

Kuang TM, Zhang C, Zangwill LM, Weinreb RN, Medeiros FA. Estimating Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects. Ophthalmology. 2015 Oct;122(10):2002-9. doi:10.1016/j.ophtha.2015.06.015 DOI: https://doi.org/10.1016/j.ophtha.2015.06.015

Kalyani VK, Bharucha KM, Goyal N, Deshpande MM. Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma. Indian J Ophthalmol. 2021 May;69(5):1108-1112. doi:10.4103/ijo.IJO_2409_20 DOI: https://doi.org/10.4103/ijo.IJO_2409_20

Fortune B, Cull GA, Burgoyne CF. Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4444-52. doi:10.1167/iovs.08-2255 DOI: https://doi.org/10.1167/iovs.08-2255

Chua J, Tan B, Ke M, et al. Diagnostic Ability of Individual Macular Layers by Spectral-Domain OCT in Different Stages of Glaucoma. Ophthalmol Glaucoma. 2020 Sep;3(5):314-326. doi:10.1016/j.ogla.2020.04.003 DOI: https://doi.org/10.1016/j.ogla.2020.04.003

Jammal AA, Thompson AC, Mariottoni EB, et al. Rates of Glaucomatous Structural and Functional Change From a Large Clinical Population: The Duke Glaucoma Registry Study. Am J Ophthalmol. 2021 Feb;222:238-247. doi:10.1016/j.ajo.2020.05.019 DOI: https://doi.org/10.1016/j.ajo.2020.05.019

Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A. Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. Am J Ophthalmol. 2017 Mar;175:37-44. doi:10.1016/j.ajo.2016.11.010 DOI: https://doi.org/10.1016/j.ajo.2016.11.010

Sung KR, Na JH, Lee Y. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J Glaucoma. 2012 Sep;21(7):498-504. doi:10.1097/IJG.0b013e318220dbb7 DOI: https://doi.org/10.1097/IJG.0b013e318220dbb7

Shin JW, Sung KR, Lee GC, Durbin MK, Cheng D. Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma. Ophthalmology. 2017 Oct;124(10):1466-1474. doi:10.1016/j.ophtha.2017.04.023 DOI: https://doi.org/10.1016/j.ophtha.2017.04.023

Gedde SJ, Vinod K, Wright MM, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern(R). Ophthalmology. 2021 Jan;128(1):P71-P150. doi:10.1016/j.ophtha.2020.10.022 DOI: https://doi.org/10.1016/j.ophtha.2020.10.022

European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol. 2021 Jun;105(Suppl 1):1-169. doi:10.1136/bjophthalmol-2021-egsguidelines DOI: https://doi.org/10.1136/bjophthalmol-2021-egsguidelines

Mahmoudinezhad G, Moghimi S, Proudfoot JA, et al. Effect of Testing Frequency on the Time to Detect Glaucoma Progression with OCT and OCT Angiography. Am J Ophthalmol. 2022 Sep 9. doi:10.1016/j.ajo.2022.08.030 DOI: https://doi.org/10.1016/j.ajo.2022.08.030

Melchior B, De Moraes CG, Paula JS, et al. Frequency of Optical Coherence Tomography Testing to Detect Progression in Glaucoma. J Glaucoma. 2022 Aug 11. doi:10.1097/IJG.0000000000002101 DOI: https://doi.org/10.1097/IJG.0000000000002101

Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011 Feb 25;52(2):1098-102. doi:10.1167/iovs.10-5922 DOI: https://doi.org/10.1167/iovs.10-5922

Ganekal S, Sadhwini MH, Kagathur S. Effect of myopia and optic disc area on ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness. Indian J Ophthalmol. 2021 Jul;69(7):1820-1824. doi:10.4103/ijo.IJO_2818_20 DOI: https://doi.org/10.4103/ijo.IJO_2818_20

Rolle T, Bonetti B, Mazzucco A, Dallorto L. Diagnostic ability of OCT parameters and retinal ganglion cells count in identification of glaucoma in myopic preperimetric eyes. BMC Ophthalmol. 2020 Sep 22;20(1):373. doi:10.1186/s12886-020-01616-5 DOI: https://doi.org/10.1186/s12886-020-01616-5

Seo S, Lee CE, Jeong JH, Park KH, Kim DM, Jeoung JW. Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. BMC Ophthalmol. 2017 Mar 11;17(1):22. doi:10.1186/s12886-017-0419-1 DOI: https://doi.org/10.1186/s12886-017-0419-1

Mwanza JC, Durbin MK, Budenz DL, Cirrus OCTNDSG. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol. 2011 Mar;151(3):514-21 e1. doi:10.1016/j.ajo.2010.09.015 DOI: https://doi.org/10.1016/j.ajo.2010.09.015

Dalgliesh JD, Tariq YM, Burlutsky G, Mitchell P. Symmetry of retinal parameters measured by spectral-domain OCT in normal young adults. J Glaucoma. 2015 Jan;24(1):20-4. doi:10.1097/IJG.0b013e318287ac2f DOI: https://doi.org/10.1097/IJG.0b013e318287ac2f

Lee SY, Jeoung JW, Park KH, Kim DM. Macular ganglion cell imaging study: interocular symmetry of ganglion cell-inner plexiform layer thickness in normal healthy eyes. Am J Ophthalmol. 2015 Feb;159(2):315-23 e2. doi:10.1016/j.ajo.2014.10.032 DOI: https://doi.org/10.1016/j.ajo.2014.10.032

Cheung CY, Yiu CK, Weinreb RN, et al. Effects of scan circle displacement in optical coherence tomography retinal nerve fibre layer thickness measurement: a RNFL modelling study. Eye (Lond). 2009 Jun;23(6):1436-41. doi:10.1038/eye.2008.258 DOI: https://doi.org/10.1038/eye.2008.258

Lee EJ, Lee KM, Kim H, Kim TW. Glaucoma Diagnostic Ability of the New Circumpapillary Retinal Nerve Fiber Layer Thickness Analysis Based on Bruch’s Membrane Opening. Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4194-204. doi:10.1167/iovs.16-19578 DOI: https://doi.org/10.1167/iovs.16-19578

Hardin JS, Taibbi G, Nelson SC, Chao D, Vizzeri G. Factors Affecting Cirrus-HD OCT Optic Disc Scan Quality: A Review with Case Examples. J Ophthalmol. 2015;2015:746150. doi:10.1155/2015/746150 DOI: https://doi.org/10.1155/2015/746150

Tatham AJ, Medeiros FA. Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. Ophthalmology. 2017 Dec;124(12S):S57-S65. doi:10.1016/j.ophtha.2017.07.015 DOI: https://doi.org/10.1016/j.ophtha.2017.07.015

Yang Z, Tatham AJ, Zangwill LM, Weinreb RN, Zhang C, Medeiros FA. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015 Jan;159(1):193-201. doi:10.1016/j.ajo.2014.10.019 DOI: https://doi.org/10.1016/j.ajo.2014.10.019

Kim YW, Lee J, Kim JS, Park KH. Diagnostic Accuracy of Wide-Field Map from Swept-Source Optical Coherence Tomography for Primary Open-Angle Glaucoma in Myopic Eyes. Am J Ophthalmol. 2020 Oct;218:182-191. doi:10.1016/j.ajo.2020.05.032 DOI: https://doi.org/10.1016/j.ajo.2020.05.032

Lee SY, Bae HW, Kwon HJ, Seong GJ, Kim CY. Repeatability and Agreement of Swept Source and Spectral Domain Optical Coherence Tomography Evaluations of Thickness Sectors in Normal Eyes. J Glaucoma. 2017 Feb;26(2):e46-e53. doi:10.1097/IJG.0000000000000536 DOI: https://doi.org/10.1097/IJG.0000000000000536

Moghimi S, Bowd C, Zangwill LM, et al. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology. 2019 Jul;126(7):980-988. doi:10.1016/j.ophtha.2019.03.003 DOI: https://doi.org/10.1016/j.ophtha.2019.03.003

Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol. 2009 Oct;148(4):597-605. doi:10.1016/j.ajo.2009.05.030 DOI: https://doi.org/10.1016/j.ajo.2009.05.030

Mesiwala NK, Pekmezci M, Huang JY, Porco TC, Lin SC. Comparison of optic disc parameters measured by RTVue-100 FDOCT versus HRT-II. J Glaucoma. 2012 Oct;21(8):516-22. doi:10.1097/IJG.0b013e3182253e58 DOI: https://doi.org/10.1097/IJG.0b013e3182253e58

Huang Y, Gangaputra S, Lee KE, et al. Signal quality assessment of retinal optical coherence tomography images. Invest Ophthalmol Vis Sci. 2012 Apr 24;53(4):2133-41. doi:10.1167/iovs.11-8755 DOI: https://doi.org/10.1167/iovs.11-8755

Gonzalez-Garcia AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN. Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol. 2009 Jun;147(6):1067-74, 1074 e1. doi:10.1016/j.ajo.2008.12.032 DOI: https://doi.org/10.1016/j.ajo.2008.12.032

Chen TC, Hoguet A, Junk AK, et al. Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology. 2018 Nov;125(11):1817-1827. doi:10.1016/j.ophtha.2018.05.008 DOI: https://doi.org/10.1016/j.ophtha.2018.05.008

Buchser NM, Wollstein G, Ishikawa H, et al. Comparison of retinal nerve fiber layer thickness measurement bias and imprecision across three spectral-domain optical coherence tomography devices. Invest Ophthalmol Vis Sci. 2012 Jun 20;53(7):3742-7. doi:10.1167/iovs.11-8432 DOI: https://doi.org/10.1167/iovs.11-8432

Heidelberg Engineering. 510(k) summary: spectralis HRA+OCT and variants. Food Drug Adm. [accessed 2022 oct 5]. https://www.accessdata.fda.gov/cdrh_docs/pdf15/K152205.pdf.

Carl Zeiss Meditec, Inc. 510(k) summary: Cirrus HD-OCT with retinal nerve fiber layer and macular normative databases. Food Drug Adm. [accessed 2022 Oct 5]. https://www.accessdata.fda.gov/cdrh_docs/pdf8/K083291.pdf.

Topcon Corporation. 510(k) summary: 3D OCT-1 Maestro. Food Drug Adm. [accessed 2022 Oct 5]. https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161509.pdf.

Optovue Inc. 510(k) summary: RTVue with Normative Database. Food Drug Adm. [accessed 2022 Oct 5]. https://www.accessdata.fda.gov/cdrh_docs/pdf10/K101505.pdf.

Published

2022-12-01

How to Cite

1.
Saheb H, Salimi A. Clinical applications of optical coherence tomography (OCT) in glaucoma. Can Eye Care Today [Internet]. 2022 Dec. 1 [cited 2024 Nov. 23];1(3):23–28. Available from: https://canadianeyecaretoday.com/article/view/1-3-3

Issue

Section

Articles