Spot the differences: Challenges in detecting glaucoma in the myopic patient

Authors

  • Cindy M. L. Hutnik, MD, PhD, FRCSC
  • Michael T. Kryshtalskyj, MD
  • Kian M. Madjedi, MD, MPhil
  • Andrew C. S. Crichton, MD, FRCSC

DOI:

https://doi.org/10.58931/cect.2022.118

Author Biographies

Cindy M. L. Hutnik, MD, PhD, FRCSC

Dr. Cindy Hutnik is a full professor in the Departments of Ophthalmology and Pathology at the Schulich School of Medicine and Dentistry, at Western University, London, Ontario, Canada. Currently she is the President of the Canadian Glaucoma Society, Chair of the Governing Committee of the Academic Medical Organization of Southwestern Ontario and a member of the Board of Glaucoma Research Society of Canada. She has a keen interest in the development of novel and/or optimization of existing treatments for patients with glaucoma.

Michael T. Kryshtalskyj, MD

Dr. Michael Kryshtalskyj is a resident physician in ophthalmology at the University of Calgary’s Cumming School of Medicine. He completed his medical studies at the University of Toronto, where he was awarded a longitudinal research studentship in Glaucoma and Advanced Anterior Segment Surgery with Dr. Ike Ahmed. Dr. Kryshtalskyj maintains an active interest in ophthalmologic research and has served as a reviewer for the Canadian Journals of Ophthalmology and Neurology. He is also active in global and rural health initiatives.

Kian M. Madjedi, MD, MPhil

Dr. Kian Madjedi is an ophthalmology resident at the University of Calgary. He completed his medical training at the Northern Ontario School of Medicine. As a Rotary Scholar, he earned a Master’s degree in Epidemiology at the University of Cambridge (Clare College), where his dissertation examined genetic associations with glaucoma. He is an active member of several international research collaborations investigating polygenic risk scores and gene-environment associations in glaucoma using data from international biobanking efforts. He is interested in all aspects of glaucoma and in improving access to glaucoma screening and management for underserviced populations.

Andrew C. S. Crichton, MD, FRCSC

Dr. Andrew Crichton is Chief of Ophthalmology for Calgary and Clinical Professor at the University of Calgary. After graduating from medical school at the University of British Columbia, he did his ophthalmology residency in Toronto and his glaucoma fellowship in Vancouver with Dr. Stephen Drance and Dr. Gordon Douglas. Dr. Crichton has previously served as President of the Canadian Glaucoma Society, Secretary of the Canadian Ophthalmologic Society, and President of the Ophthalmology Society of Alberta.

References

Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-1042. doi:10.1016/J.OPHTHA.2016.01.006 DOI: https://doi.org/10.1016/j.ophtha.2016.01.006

The impact of myopia and high myopia: report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia, University of New South Wales, Sydney, Australia, 16–18 March 2015. Geneva: World Health Organization; 2.

Nishida Y, Fujiwara T, Imamura Y, Lima LH, Kurosaka D, Spaide RF. Choroidal thickness and visual acuity in highly myopic eyes. Retina. 2012;32(7):1229-1236. doi:10.1097/IAE.0B013E318242B990 DOI: https://doi.org/10.1097/IAE.0b013e318242b990

Ohno-Matsui K. Pathologic Myopia. Asia-Pacific J Ophthalmol (Philadelphia, Pa). 2016;5(6):415-423. doi:10.1097/APO.0000000000000230 DOI: https://doi.org/10.1097/APO.0000000000000230

Hsu CH, Chen RI, Lin SC. Myopia and glaucoma: sorting out the difference. Curr Opin Ophthalmol. 2015;26(2):90-95. doi:10.1097/ICU.0000000000000124 DOI: https://doi.org/10.1097/ICU.0000000000000124

Casson RJ, Chidlow G, Wood JPM, Crowston JG, Goldberg I. Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol. 2012;40(4):341-349. doi:10.1111/J.1442-9071.2012.02773.X DOI: https://doi.org/10.1111/j.1442-9071.2012.02773.x

Pan CW, Cheung CY, Aung T, et al. Differential associations of myopia with major age-related eye diseases: the Singapore Indian Eye Study. Ophthalmology. 2013;120(2):284-291. doi:10.1016/J.OPHTHA.2012.07.065 DOI: https://doi.org/10.1016/j.ophtha.2012.07.065

Shim SH, Sung KR, Kim JM, et al. The Prevalence of Open-Angle Glaucoma by Age in Myopia: The Korea National Health and Nutrition Examination Survey. Curr Eye Res. 2017;42(1):65-71. doi:10.3109/02713683.2016.1151053 DOI: https://doi.org/10.3109/02713683.2016.1151053

Lee KS, Lee JR, Kook MS. Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes. Ophthalmology. 2014;121(5):1013-1019. doi:10.1016/J.OPHTHA.2013.11.014 DOI: https://doi.org/10.1016/j.ophtha.2013.11.014

Park HYL, Choi S Il, Choi JA, Park CK. Disc Torsion and Vertical Disc Tilt Are Related to Subfoveal Scleral Thickness in Open-Angle Glaucoma Patients With Myopia. Invest Ophthalmol Vis Sci. 2015;56(8):4927-4935. doi:10.1167/IOVS.14-15819 DOI: https://doi.org/10.1167/iovs.14-15819

Malik R, Belliveau AC, Sharpe GP, Shuba LM, Chauhan BC, Nicolela MT. Diagnostic Accuracy of Optical Coherence Tomography and Scanning Laser Tomography for Identifying Glaucoma in Myopic Eyes. Ophthalmology. 2016;123(6):1181-1189. doi:10.1016/J.OPHTHA.2016.01.052 DOI: https://doi.org/10.1016/j.ophtha.2016.01.052

Tan NYQ, Sng CCA, Jonas JB, Wong TY, Jansonius NM, Ang M. Glaucoma in myopia: diagnostic dilemmas. Br J Ophthalmol. 2019;103(10):1347-1355. doi:10.1136/BJOPHTHALMOL-2018-313530 DOI: https://doi.org/10.1136/bjophthalmol-2018-313530

Kimura Y, Hangai M, Morooka S, et al. Retinal Nerve Fiber Layer Defects in Highly Myopic Eyes with Early Glaucoma. Invest Ophthalmol Vis Sci. 2012;53(10):6472-6478. doi:10.1167/IOVS.12-10319 DOI: https://doi.org/10.1167/iovs.12-10319

Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Ophthalmol. 2013;24(2):96-101. doi:10.1097/ICU.0B013E32835CEF31 DOI: https://doi.org/10.1097/ICU.0b013e32835cef31

Chong GT, Lee RK. Glaucoma versus red disease: imaging and glaucoma diagnosis. Curr Opin Ophthalmol. 2012;23(2):79-88. doi:10.1097/ICU.0B013E32834FF431 DOI: https://doi.org/10.1097/ICU.0b013e32834ff431

Park EA, Budenz DL, Lee RK, Chen TC. Red and Green Disease in Glaucoma. Atlas Opt Coherence Tomogr Glaucoma. Published online 2020:127-174. doi:10.1007/978-3-030-46792-0_8 DOI: https://doi.org/10.1007/978-3-030-46792-0_8

Tomography: Interpreting the RNFL Maps in Healthy Myopic Eyes. Invest Ophthalmol Vis Sci. 2012;53(11):7194-7200. doi:10.1167/IOVS.12-9726 DOI: https://doi.org/10.1167/iovs.12-9726

Wu Q, Chen Q, Lin B, et al. Relationships among retinal/choroidal thickness, retinal microvascular network and visual field in high myopia. Acta Ophthalmol. 2020;98(6):e709-e714. doi:10.1111/AOS.14372 DOI: https://doi.org/10.1111/aos.14372

Tay E, Seah SK, Chan SP, et al. Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol. 2005;139(2):247-252. doi:10.1016/J.AJO.2004.08.076 DOI: https://doi.org/10.1016/j.ajo.2004.08.076

Aung T, Foster PJ, Seah SK, et al. Automated static perimetry: the influence of myopia and its method of correction. Ophthalmology. 2001;108(2):290-295. doi:10.1016/S0161-6420(00)00497-8 DOI: https://doi.org/10.1016/S0161-6420(00)00497-8

Hirooka K, Fujiwara A, Shiragami C, Baba T, Shiraga F. Relationship between progression of visual field damage and choroidal thickness in eyes with normal-tension glaucoma. Clin Experiment Ophthalmol. 2012;40(6):576-582. doi:10.1111/J.1442-9071.2012.02762.X DOI: https://doi.org/10.1111/j.1442-9071.2012.02762.x

Kim YK, Yoo BW, Jeoung JW, Kim HC, Kim HJ, Park KH. Glaucoma- Diagnostic Ability of Ganglion Cell-Inner Plexiform Layer Thickness Difference Across Temporal Raphe in Highly Myopic Eyes. Invest Ophthalmol Vis Sci. 2016;57(14):5856-5863. doi:10.1167/IOVS.16-20116 DOI: https://doi.org/10.1167/iovs.16-20116

Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of Glaucomatous Changes in Subjects with High Myopia Using Spectral Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2011;52(2):1098-1102. doi:10.1167/IOVS.10-5922 DOI: https://doi.org/10.1167/iovs.10-5922

Akashi A, Kanamori A, Ueda K, Inoue Y, Yamada Y, Nakamura M. The Ability of SD-OCT to Differentiate Early Glaucoma With High Myopia From Highly Myopic Controls and Nonhighly Myopic Controls. Invest Ophthalmol Vis Sci. 2015;56(11):6573-6580. doi:10.1167/IOVS.15-17635 DOI: https://doi.org/10.1167/iovs.15-17635

Biswas S, Lin C, Leung CKS. Evaluation of a Myopic Normative Database for Analysis of Retinal Nerve Fiber Layer Thickness. JAMA Ophthalmol. 2016;134(9):1032-1039. doi:10.1001/JAMAOPHTHALMOL.2016.2343 DOI: https://doi.org/10.1001/jamaophthalmol.2016.2343

Foo LL, Ng WY, Lim GYS, Tan TE, Ang M, Ting DSW. Artificial intelligence in myopia: current and future trends. Curr Opin Ophthalmol. 2021;32(5):413-424. doi:10.1097/ICU.0000000000000791 DOI: https://doi.org/10.1097/ICU.0000000000000791

Leite D, Campelos M, Fernandes A, et al. Machine Learning automatic assessment for glaucoma and myopia based on Corvis ST data. Procedia Comput Sci. 2022;196:454-460. doi:10.1016/J.PROCS.2021.12.036 DOI: https://doi.org/10.1016/j.procs.2021.12.036

Lee J, Kim YK, Jeoung JW, Ha A, Kim YW, Park KH. Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients. Japanese J Ophthalmol 2019 641. 2019;64(1):68-76. doi:10.1007/S10384-019-00706-2 DOI: https://doi.org/10.1007/s10384-019-00706-2

Published

2022-06-01

How to Cite

1.
Hutnik CML, Kryshtalskyj MT, Madjedi KM, Crichton ACS. Spot the differences: Challenges in detecting glaucoma in the myopic patient. Can Eye Care Today [Internet]. 2022 Jun. 1 [cited 2024 Oct. 22];1(1):20–25. Available from: https://canadianeyecaretoday.com/article/view/1-1-3

Issue

Section

Articles